The Additive Completion of kth Powers

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE ADDITIVE COMPLETION OF Kth-POWERS

Let k ≥ 2 be an integer. For fixed N , we consider a set A of non-negative integers such that for all integer n ≤ N , n can be written as n = a + b, a ∈ A , b a positive integer. We are interested in a lower bound for the number of elements of A . Improving a result of Balasubramanian [1], we prove the following theorem: Theorem 1. |AN | ≥ N1− 1 k { 1 Γ(2− 1 k )Γ(1 + 1 k ) + o(1) } . 1. STATMEN...

متن کامل

Values of the Euler function free of kth powers

We establish an asymptotic formula for the number of positive integers n x for which φ(n) is free of kth powers. © 2006 Elsevier Inc. All rights reserved. MSC: 11N37; 11A25

متن کامل

A Binary Additive Equation Involving Fractional Powers

with integers m1, m2; henceforth, [θ] denotes the integral part of θ. Subsequently, the range for c in this result was extended by Gritsenko [3] and Konyagin [5]. In particular, the latter author showed that (1) has solutions in integers m1, m2 for 1 < c < 3 2 and n sufficiently large. The analogous problem with prime variables is considerably more difficult, possibly at least as difficult as t...

متن کامل

ON THE NUMBER OF ELEMENTS THAT ARE NOT kth POWERS IN A GROUP

Let k be a positive integer, and suppose that the number of elements of a group G that are not k th powers in G is nonzero but finite. If G is finite, we obtain an upper bound on |G|, and we present some conditions sufficient to guarantee that G actually is finite.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1999

ISSN: 0022-314X

DOI: 10.1006/jnth.1999.2441